Reaktive E=C $(p-p)\pi$ -Systeme

XVII *. Diels-Alder-Addukte des Perfluor-2-phosphapropens als Liganden in Chrom- und Wolframpentacarbonylkomplexen

Joseph Grobe^{*}, Duc Le Van, Wolfgang Meyring, Bernt Krebs und Mechtild Dartmann

Anorganisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Wilhelm Klemm-Strasse 8, D-4400 Münster (B.R.D.)

(Eingegangen den 30. November 1987)

Abstract

The reactions of the Diels-Alder adducts 2-9 of $F_3CP=CF_2$ (1) [adduct with isoprene (2), with 2,3-dimethylbutadiene (3), with 2,3-diphenylbutadiene (4), with cyclopentadiene (5), with pentamethylcyclopentadiene (6), with furan (7), with 1,3-cyclohexadiene (8), with 9,10-dimethylanthracene (9)] with the photochemically produced complexes $M(CO)_5THF$ lead to the pentacarbonyl metal compounds 2a-9a (M = Cr) and 2b-9b (M = W), respectively, in moderate to good yields (40-72%). Spectroscopic investigations of the new complexes show that with respect to ligand properties, the cyclic phosphanes 2-9 correspond to the compounds $(CH_3)_2PCF_3$ and $H_3CP(CF_3)_2$, which indicates that steric effects are of minor importance for the MP bond. The determination of the crystal and molecular structure of 5a supports the arrangement of substituents on the PC bond of the cycloadduct 5 as deduced from NMR data. The main product of the [2 + 4]-cycloaddition of 1 to cyclopentadiene is the *endo* isomer. New compounds have been identified by elemental analysis (C, H) and by mass, NMR and IR spectroscopy.

Zusammenfassung

Die Umsetzung der Diels-Alder-Addukte 2-9 von $F_3CP=CF_2$ (1) [Addukt mit Isopren (2), mit 2,3-Dimethylbutadien (3), mit 2,3-Diphenylbutadien (4), mit

^{*} XVI. Mitteilung siehe Ref. 1; Gleichzeitig XXXVIII. Mitteilung der Reihe "Perfluormethyl-Element-Liganden (XXXVII. Mitteilung siehe Ref. 2). Herrn Professor Dr. Dr. h.c. Harald Schäfer zum 75. Geburtstag am 10. Februar 1988 gewidmet.

Cyclopentadien (5), mit Pentamethylcyclopentadien (6), mit Furan (7), mit 1,3-Cyclohexadien (8), mit 9,10-Dimethylanthracen (9)] mit den photochemisch erzeugten Komplexen $M(CO)_5$ THF führt in mässigen bis guten Ausbeuten (40–72%) zu den entsprechenden Pentacarbonylverbindungen **2a–9a** (M = Cr) bzw. **2b–9b** (M = W). Die spektroskopische Untersuchung der neuen Komplexe zeigt, dass die cyclischen Phosphane **2–9** in ihren Ligandeneigenschaften den Verbindungen (CH₃)₂PCF₃ und CH₃P(CF₃)₂ in etwa entsprechen, sterische Effekte also nur von geringer Bedeutung für die MP-Bindung sind. Die Ermittlung der Kristall- und Molekülstruktur von **5a** bestätigt die aus NMR-Daten abgeleitete Anordnung der Substituenten an der PC-Bindung des Cycloaddukts **5**. Hauptprodukt der [2 + 4]-Cycloaddition von **1** an Cyclopentadien ist das *endo*-Isomere. Die neuen Verbindungen werden durch analytische (C, H) und spektroskopische Untersuchungen (NMR, IR, MS) charakterisiert.

Einleitung

Die enge Verwandtschaft von Fluorphosphaalkenen mit Fluoralkenen kommt besonders deutlich in ihren dienophilen Eigenschaften zum Ausdruck [3–7]. So ergibt sich z. B. für die Reaktion des Perfluor-2-phosphapropens $F_3CP=CF_2$ (1) mit Isopren eine ausgeprägte Regiospezifität und die [2 + 4]-Cycloaddition von 1 an Cyclopentadien oder 1,3-Cyclohexadien verläuft stereospezifisch. Die resultierenden Phospha-Heterocyclen sind ölartige Flüssigkeiten, so dass eindeutige Strukturaussagen auf der Basis von Röntgenbeugungsuntersuchungen bisher nicht möglich waren. Kristalline Verbindungen sind häufig durch Darstellung von Komplexen der Phospha-Heterocyclen zugänglich. So gelang vor kurzem die Auftrennung der strukturisomeren Cycloaddukte von 1 an Isopren durch Kombination mit Pentacarbonylchrom- bzw. -wolframfragmenten und die Ermittlung der Struktur des Chromkomplexes $Cr(CO)_5C_6H_8F_5P$ (mit 2 als Ligand, s. Schema 1). Dieser Erfolg

veranlasste uns, durch Komplexierung weiterer Diels-Alder-Addukte von 1 (Schema 1) die bisher nur auf NMR-Daten basierende Strukturzuordnung in geeigneten Fällen durch Röntgenbeugung an kristallinen $M(CO)_5$ -Derivaten abzusichern.

Ausserdem interessierten die Ligandeneigenschaften der [2 + 4]-Cycloaddukte im Rahmen unserer Untersuchungen zum Koordinationsverhalten von Trifluormethyl-Element-Verbindungen [2,9]. Die im Schema 1 angegebenen Liganden 2-9 unterscheiden sich nur im Raumbedarf, nicht aber in ihren Elektronegativitäten, so dass sie sich zur Untersuchung sterischer Einflüsse auf die Ligandeneigenschaften, angezeigt durch die Variation spektrometrischer Daten (IR, NMR), besonders eignen. Informationen zu diesem Aspekt liegen in der Literatur bisher kaum vor; lediglich von Mathey et al. [10] wurde kürzlich über die Darstellung einiger Wolframkomplexe dieses Typs durch Abfangreaktionen koordinierter RP=CR'R"-Systeme berichtet.

Darstellung der M(CO)₅L-Komplexe (M = Cr, W; L = 2-9)

Bei der Umsetzung äquimolarer Mengen der Diels-Alder-Addukte 2, 3 und 5-8 mit frisch hergestellten Lösungen der $M(CO)_5$ THF-Komplexe [11] wird unter Lichtschutz die Entfärbung der Mischungen je nach M und L innerhalb von 14 bis 48 h beobachtet. Eine deutlich langsamere Substitution von THF gegen L gemäss Gl. 1 ergibt sich für die Phosphane 4 und 9 mit aromatischen Baugruppen. (s. Exp. Teil).

$$M(CO)_{5}THF + L \to M(CO)_{5}L + THF$$
(1)

L: Diels-Alder-Addukte 2-9

M = Cr: 2a-9a; M = W: 2b-9b

Analytische (C, H) und spektroskopische Daten (MS, NMR, IR) weisen die Produkte 2a-9a bzw. 2b-9b als die Pentacarbonylphosphankomplexe $M(CO)_5L$ (M = Cr bzw. W) aus. Die Ausbeuten liegen zwischen 40 und 72% d.Th. und lassen sich auch bei Verwendung der alternativen Vorstufe $M(CO)_5(CH_2Cl_2)$ [12] nicht signifikant verbessern. Die Verbindungen 2a-9b sind bei Raumtemperatur beständig, zeigen gute Löslichkeit in allen gängigen organischen Lösungsmitteln und nur geringe Luft- und Lichtempfindlichkeit. In allen Fällen bleibt die in Schema 1 aufgeführte Strukturisomerenverteilung der Liganden bei der Komplexbildung erhalten. Die Dominanz eines der beiden Isomeren erlaubte bisher nur die präparative Reinisolierung des Komplexes 2a; über die Strukturbestimmung und thermische Freisetzung des Phosphans 2 haben wir vor kurzem berichtet [8]. Die Röntgenbeugungsanalyse des Komplexes 5a in der vorliegenden Arbeit beweist die Endostruktur des Cycloadduktes 5.

Spektroskopische Untersuchungen

Die hier zusammengefassten spektroskopischen Informationen (IR, NMR, MS) dienen in erster Linie der Identifizierung der neuen Komplexe. Zusätzlich sollen die durch Vergleich der Daten von freien und koordinierten Liganden zugänglichen Koordinationseffekte als Basis für die Diskussion der Bindungsverhältnisse in den Komplexen 2a-9b genutzt werden.

Verb.	$\nu(A_1^2)$	$\nu(\mathbf{B}_1)$	$\nu(A_1^1)$	ν(E)	$\nu(\mathbf{B}_1)_{\mathrm{ber.}}^{b}$	<i>k</i> ₁	k ₂	k _i
Za	2070m	1997w	1971s	1955vs	1994	15.96	15.99	0.275
2b	2076m	1995w	1968s	1955vs	1995	15.92	16.02	0.292
3a	2071m	1998w	1970s	1955vs	1994	15.90	15.99	0.279
3b	2075m	1996w	1966s	1951vs	1992	15.85	15.97	0.298
la	2071m	1998w	1970s	1959vs	1996	15.88	16.04	0.270
4b	2077m	1996w	1968s	1959vs	1998	15.86	16.07	0.287
5a	2070m	1998w	1968s	1952vs	1994	15.86	16.01	0.274
				1960vs				
5b	2077m	1996w	1966s	1949vs	1995	15.84	16.02	0.297
				1960vs				
5a	2069m	1997w	1966s	1948vs	1994	15.83	15.96	0.280
				1957vs				
5b	2074m	1994w	1961s	1943vs	1990	15.74	16.05	0.283
				1953vs				
7 a	2074m	2000w	1976s	1952vs	1997	15.99	16.06	0.276
				1966vs				
7b	2078m	1997w	1972s	1952vs	1998	15.92	16.07	0.291
				1965vs				
Ba	2070m	1998w	1969s	1951vs	1993	15.88	15.97	0.279
				1956vs				
3b	2077m	1995w	1967s	1950vs	1993	15.86	15.99	0.299
				1955vs				
)a	2068m	1997w	1966s,sh ^c	1943vs	1993	15.82	15.97	0.274
	2076m	1995w	1959s,sh ^c	1941vs	1992	15.73	15.97	0.305

CO-Valenzfrequenzen $\nu(\text{cm}^{-1})^{a}$ und Valenzkraftkonstanten $k (10^{-2} \text{ Nm}^{-1})$ der M(CO)₅L-Komplexe (L = 2-9, M = Cr (a), W (b)); Lösungsmittel: Cyclohexan

^a Intensitäten: m = mittel, s = stark, vs = sehr stark; sh = Schulter. ^b $\nu(B_1)$ berechnet nach $\nu(B_1) = 1/3[\nu(A_1^2) + 2\nu(E)]$. ^c sh enthält eine Komponente der aufgespaltenen E-Bande.

IR-Spektren im CO-Valenzbereich

Die IR-Spektren der Komplexe **2a-9b** im Bereich von 2200 bis 1800 cm⁻¹ enthalten entsprechend der gruppentheoretischen Vorhersage drei IR-aktive Banden der Rassen A_1^1 , A_1^2 und E (Tab. 1), wobei sich für die Frequenzen bzw. die Intensitäten die Abstufungen

$$\nu(A_1^2) > \nu(A_1^1) > \nu(E)$$
 bzw. $I(E) \gg I(A_1^1) > I(A_1^2)$

ergeben. Figur 1 gibt die Spektren der Komplexe **2a**, **5a** und **9a** wieder und lässt den in dieser Richtung ansteigenden Raumbedarf der Liganden in seiner Auswirkung auf das Bandenmuster erkennen. Abweichungen der $M(CO)_5$ -Einheit von der idealen $C_{4\nu}$ -Symmetrie führen zur Verbreiterung oder Aufspaltung der E-Bande, ein Effekt, der beim Übergang von den mono- zu den bicyclischen Liganden deutlich wird und bei der Koordination des [2 + 4]-Cycloadduktes von **1** an 9,10-Dimethylanthracen (L = **9**) besonders gross ausfällt. Die Aufspaltung $\Delta\nu(E)$ beträgt bei den Komplexen **8a** bzw. **8b** 14 bzw. 13 cm⁻¹, bei **9a** bzw. **9b** 23 bzw. 18 cm⁻¹. Als weitere Konsequenz der Symmetrieerniedrigung wird in allen IR-Spektren die B₁-Bande mit geringer Intensität beobachtet. Ihre Lage stimmt mit den nach $\nu(B_1) = \frac{1}{3}[\nu(A_1^2) + 2\nu(E)]$ bzw. $\nu(B_1) = \frac{1}{3}[\nu(A_1^2) + \nu(E') + \nu(E'')]$ [13] berechneten Werten gut überein. Die in Tab. 1 zusammengefassten CO-Valenzfrequenzen und die nach Cotton und

Tabelle 1

Fig. 1. IR-Spektren im CO-Valenzbereich der Komplexe 2a, 5a und 9a.

Kraihanzel [14] ermittelten Kraftkonstanten sind trotz der unterschiedlichen Grösse und Form der Liganden 2–9 nahezu identisch mit denen der Komplexe $M(CO)_5P(CF_3)Me_2$ (M = Cr, W) [15].

NMR-Spektren

Die Protonenresonanzen der Verbindungen 2a-9b führen erwartungsgemäss zu ähnlichen Signalmustern wie die der zugehörigen freien Liganden. Die Signale der CH₂- bzw. CH-Gruppen in α -Stellung zum Phosphoratom weisen Koordinationsverschiebungen von ca. 0.2 ppm zu tiefem Feld auf (Tab. 2). In den meisten Fällen ist die Ermittlung der Kopplungsparameter J(PH) wegen der Überschneidung mit anderen Wechselwirkungen [J(HH), J(HF)] schwierig. Daher eignen sich die ¹H-NMR-Spektren kaum zur Unterscheidung der auftretenden Isomeren (z.B. *Endo* / *Exo*), wenn man nicht auf hochaufgelöste 300 MHz-Spektren und aufwendige Doppelresonanzmessungen zurückgreifen kann.

Dagegen bieten die ¹⁹F-NMR-Spektren der Komplexe **2a–9b** ein übersichtliches Bild: Sie enthalten zwei Signale, die Resonanz des CF₃-Substituenten [ddd, ²J(PF), ⁴J(FF)] und das AB-Spektrum der CF₂-Gruppe im Bereich von -80 bis -110 ppm mit grosser AB-Kopplung (247–279 Hz). Figur 2 zeigt als Beispiel das ¹⁹F-NMR-Spektrum von **4a**. Die Koordination der Liganden **2–9** ist mit folgenden Effekten auf die Fluorresonanzen verbunden (Tab. 3):

1. Im Einklang mit früheren Ergebnissen [2,10,15,16] verschieben sich die Resonanzen der CF₃- und CF₂-Gruppe um ca. 2-5 ppm zu höherem Feld.

2. Während sich die ${}^{2}J(PF)$ -Kopplung der CF₃-Gruppe bei der Koordination nur wenig ändert $[\Delta^{2}J(PF) = {}^{2}J(PF)_{Komplex} - {}^{2}J(PF)_{Ligand} \approx 0-10$ Hz], wird der ${}^{2}J(PF_{A})$ -Wert der CF₂-Gruppe infolge der Aufhebung der Wechselwirkung mit dem freien Elektronenpaar am Phosphor [17] im Vergleich zum freien Liganden um 50 bis 100 Tabelle 2

¹H-NMR-Daten der Komplexe 3a-9b^{a,b}

```
3a: \delta 2.52 (m, 4H, H<sub>2</sub>C), 1.52 (s, 3H, H<sub>2</sub>C), 1.39 (s, 3H, H<sub>2</sub>C)
3b: \delta 2.64 (m, 4H, H<sub>2</sub>C), 1.52 (s, 3H, H<sub>3</sub>C), 1.39 (s, 3H, H<sub>3</sub>C)
4a: δ 6.83 (m, br., 10H, Ph), 2.98 (m, 4H, H<sub>2</sub>C)
4b: δ 6.89 (m, br., 10H, Ph), 3.10 (m, 4H, H<sub>2</sub>C)
5a: δ 5.95 (m, 1H, HC=C), 5.72 (m, 1H, HC=C), 3.06 (dm, 1H, HC),
     <sup>2</sup>J(PH) 14, 2.80 (m, 1H, HC), 1.87 (m, 1H, H<sub>2</sub>C), 1.62 (m, 1H, H<sub>2</sub>C)
5b: δ 5.90 (m, 1H, HC=C), 5.77 (m, 1H, HC=C), 3.05 (m, 1H, HC),
     ^{2}J(PH) 16, 2.77 (m, 1H, HC), 1.92 (m, 1H, H<sub>2</sub>C), 1.65 (m, 1H, H<sub>2</sub>C)
6a: δ 2.11 (m, br., 1H, HC), 1.55 (s, 6H, H<sub>3</sub>C), 1.37 (d, 3H, H<sub>3</sub>C),
     <sup>3</sup>J(PH) 18.0, 1.02 (s, 3H, H<sub>3</sub>C), 0.57 (d, 3H, H<sub>3</sub>C), <sup>3</sup>J(PH) 6.6
6b: δ 2.21 (m, br., 1H, HC), 1.52 (s, 6H, H<sub>3</sub>C), 1.29 (d, 3H, H<sub>3</sub>C),
     <sup>3</sup>J(PH) 20.0, 0.97 (s, 3H, H<sub>3</sub>C), 0.51 (d, 3H, H<sub>3</sub>C), <sup>3</sup>J(PH) 6.6
7a: 8 6.04 (m, 1H, HC=C), 5.80 (m, br., 1H, HC=C),
     5.20 (dm, 1H, HC), <sup>2</sup>J(PH) 11.0, 4.45 (m, 1H, HC)
7b: δ 6.02 (m, 1H, HC=C), 5.74 (m, br., 1H, HC=C),
    4.94 (dm, 1H, HC), <sup>2</sup>J(PH) 11.0, 4.30 (m, 1H, HC)
8a: \delta 5.85 (m, 2H, HC=C), 2.60 (m, br., 2H, HC), 1.72 (m, 2H, H<sub>2</sub>C), 0.90 (m, 2H, H<sub>2</sub>C)
8b: \delta 5.85 (m, 2H, HC=C), 2.65 (m, br., 2H, HC), 1.77 (m, 2H, H<sub>2</sub>C), 0.97 (m, 2H, H<sub>2</sub>C)
9a: δ 8.06 (m, br., 8H, aromat.), 2.99 (d, 3H, H<sub>3</sub>C-C-P), <sup>3</sup>J(PH) 18.0, 2.78 (s, 3H, H<sub>3</sub>C-C-C)
9b: δ 8.06 (m, br., 8H, aromat.), 2.94 (d, 3H, H<sub>3</sub>C-C-P), <sup>3</sup>J(PH) 18.0, 2.80 (s, 3H, H<sub>3</sub>C-C-C)
```

```
<sup>a</sup> Daten der Verbindungen 2a, 2b (s. Lit. 8). <sup>b</sup> Lösungsmittel: C_6D_6, \delta in ppm, J in Hz, \delta(H) rel. zu TMS.
```

Hz kleiner. In vielen Fällen beobachtet man parallel dazu eine Vergrösserung der ${}^{2}J(PF_{B})$ -Kopplung.

3. Die Fluorresonanzen sind bekanntlich stark abhängig von der räumlichen Anordnung der Substituenten [18] und ermöglichen daher die Unterscheidung von Strukturisomeren. Für die Komplexe der Cycloaddukt-Gemische 2, 2' sowie 5, 5' bis 8, 8' ergibt sich durch Integration der ¹⁹F-NMR-Spektren eine unveränderte Isomerenverteilung.

Fig. 2. ¹⁹F-NMR-Spektrum von 4a.

Tabelle 3 ¹⁹F-NMR-D

-0
G
_
a
- T
- <u>-</u>
C
43
.
- B
<u> </u>
ō.
=
-
0
1.2
24
5
<u> </u>
.0
-
5
<u> </u>
ä
н.
1 U -
e ce
∽.
Z
Π.
ĽĹ.

.

Ę	δ(CF ₃)	² J(PF)	⁴ (FF _A)	⁴ J(FF _B)	δ(CF ₂)		$^{2}J(PF_{A})$	$^{2}J(\mathrm{PF}_{\mathrm{B}})$	$J(\mathbf{F}_{\mathbf{A}}\mathbf{F}_{\mathbf{B}})$
					FA	F _B			
	- 59.06	63.0	6.0	12.0	- 90.81	- 96.10	125.0	54.4	278.0
	- 59.30	67.2	5.0	10.8	- 90.66	- 96.68	122.5	52.5	275.0
	- 58.52	63.0	4.8	11.8	- 84.78	- 96.18	140.0	47.0	272.5
	- 59.02	66.4	4.4	12.0	- 84.31	- 97.36	140.0	49.0	275.0
	- 52.61	67.6	5.6	10.4	- 88.37	- 97.79	136.0	35.0	250.0
	- 53.58	70.4	5.0	9.8	- 87.15	- 99.10	141.0	37.0	250.0
	-51.67	62.6	5.0	11.0	- 93.16	- 107.17	136.0	27.5	247.5
_	- 52.66	56.0	5.0	7.5	I	I	ı	ı	I
	- 52.42	65.2	5.6	10.4	- 91.63	- 108.03	138.0	30.0	248.0
~	- 53.09	56.4	5.6	10.4	I	I	I	ı	ł
	- 55.52	68.3	2.8	11.8	- 97.84	- 104.90	104.0	25.0	255.0
_	- 54.57	65.6	8.0	8.0	ı	I	I	ı	I
	- 56.18	72.6	3.0	12.0	- 96.53	- 106.25	110.0	30.0	252.5
	- 55.02	9.69	6.2	6.2	I	I	ı	1	I
	- 54.10	67.8	8.2	8.2	- 92.50	93.60	98.0	80.0	265.0
	-54.57	70.0	5.8	10.8	- 91.94	- 94.69	130.0	56.0	257.5
	- 52.99	60.0	3.0	14.2	- 87.39	-100.98	132.5	27.5	253.0
	- 53.46	62.0	1.0	14.0	- 85.35	- 101.66	137.0	30.0	250.0

^a Daten der Verbindungen 2a, 2b (s. Lit. 8).^b Lösungsmittel: C₆D₆, 8 in ppm, J in Hz, 8(F) (rel. zu CCl₃F).

-

Verb.	$\delta(P)_{Ligand}$	$\delta(P)_{Komplex}$	$\Delta\delta(\mathbf{P})$	¹ J(WP)	
2	- 20.8				_
5		72.6	93.4		
3a		26.1	46.9	260	
3b	a 0 (2011			
4	- 20.6	77 3	97 9		
4 a		10.1	50.7	266	
4b		30.1	50.7		
5	5.3		00.4		
5a		95.7	90.4	262	
5b		49.2	43.9	252	
6	15.3				
ба		105.9	90.6		
ക		65.1	49.8	248	
6′	2.7				
б'а		90.0	87.3		
7	-19.2				
7a		78.5	97.7		
7Ь		30.5	49.7	261	
7′	- 30.7				
7'a		69.2	99.9		
7b		22.0	52.7	264	
8	5.8				
8a		97.8	92.0		
8b		53.0	47.2	254	
9	10.3				
9a		105.6	95.3		
9b		65.4	55.1	264	

abelle 4	
P{ ¹ H}-NMR-Daten der Komplexe 3a-9b im Vergleich mit den Daten der freien Liganden ^a	, <i>b</i>

^a Daten der Verbindungen 2, 2a, 2b: Lit. 8. ^b Lösungsmittel: C₆D₆, δ in ppm, J in Hz, δ (P) relativ zu 85% H₃PO₄.

Tabelle 5

Massenspektren der Komplexe 3a-9b; (rel. Intensität in %)^a

Verb.	<i>M</i> ⁺	M^+ – CO	M ⁺ - 2CO	M ⁺ - 3CO	<i>M</i> ⁺ – 4CO	$M^+ - 5CO$	1,3-Dien ⁺
3a	46.2	0.6	9.0	10.8	50.6	100.0	_
3b	100.0	0.0	0.0	35.7	36.0	65.0	_
4 a	10.6	0.0	0.9	0.7	0.0	100.0	28.3
4b	75. 4	0.0	33.7	1.6	6.0	43.3	-
5a	20.3	6.4	2.7	9.6	32.6	76.4	100.0
5b	100.0	2.3	5.5	37.3	13.7	100.0	_
6a	8.6	0.0	0.0	1.3	16.2	27.6	100.0
6b	29.6	0.5	0.6	0.6	0.0	0.4	-
7a	26.5	0.4	2.7	11.5	47.8	100.0	53.0
7b	35.0	0.0	0.0	0.0	3.8	4.4	41.8
8a	15.5	0.3	2.5	8.9	31.2	100.0	-
8b	100.0	0.0	20.5	75.0	3.8	91.2	-
9a	16.7	0.0	0.5	11.0	25.2	100.0	50.1
9b	30.1	0.0	0.0	0.0	0.4	7.9	100.0

^a Daten der Komplexe 2a, 2b: Lit. 8.

Als wichtige Stütze für die Folgerungen aus den ¹⁹F-NMR-Parametern erweisen sich die Phosphorresonanzdaten (Tab. 4). Die charakteristischen Koordinationsverschiebungen $\Delta\delta(P)$ beweisen die Anbindung der Liganden durch das P-Atom. Die ¹H-entkoppelten ³¹P-Signale besitzen ddq-Muster [²J(PF_A), ²J(PF_B), ²J(PCF₃)]. Figur 3 lässt die Änderungen des ³¹P-Signals des Liganden 9 bei der Kombination mit dem Cr(CO)₅-Fragment erkennen.

Die Koordinationsverschiebungen $\Delta\delta(P) = \delta(P)_{\text{Komplex}} - \delta(P)_{\text{Ligand}}$ (Tab. 4) liegen für M = Cr bei 90–100, für M = W bei 40–50 ppm und stimmen ebenso wie die IR-Daten und die ¹J(WP)-Kopplungen (etwa 255–265 Hz) mit den entsprechenden Ergebnissen für die Komplexe M(CO)₅P(CF₃)Me₂ [15] überein.

Massenspektren

Die Massenspektren der Komplexe 2a-9b zeigen den Molekülpeak und die für Metallcarbonylderivate charakteristische Fragmentierung durch stufenweise Abspaltung der CO-Liganden. Bei den Chromkomplexen tritt in der Regel das Fragment M^+ - 5CO als Basispeak des Spektrums auf. Bei den Verbindungen 5a-9b

werden in beträchtlichen Anteilen die $[1,3-Dien]^+$ -Ionen beobachtet, ein Befund, der der Cycloreversion des Liganden zuzuschreiben ist. Tabelle 5 gibt die M^+ -Daten und die wichtigsten Bruchstückionen sowie die zugehörigen Intensitäten wieder.

Molekül- und Kristallstruktur des 2-(Trifluormethyl)-3,3-difluor-2-phosphabicyclo-[2.2.1]hept-5-en(pentacarbonyl)-chroms (5a)

Die [2 + 4]-Cycloaddition von Phosphaalkenen erfolgt nach einem synchronen Mechanismus [19]. Es ist daher zu erwarten, dass die Umsetzung des Perfluor-2phosphapropens 1 mit Cyclopentadien bevorzugt zu dem *endo*-Isomeren 5 führt. Die Analyse der ¹⁹F- und ³¹P-NMR-Daten stützt diese Formulierung. Die getroffene Zuordnung der Parameter wird – wie hier gezeigt – durch eine Röntgenbeugungsuntersuchung an Einkristallen des Komplexes **5a** bei 140 K bestätigt.

5a kristallisiert in der triklinen Raumgruppe $P\overline{1}$ mit den Gitterparametern *a* 9.253(2), *b* 12.408(2), *c* 13.978(3) Å; α 79.91(2), β 73.91(2), γ 78.86(2)°. Die Elementarzelle (Fig. 4) enthält vier Formeleinheiten, d.h. zwei unabhängige Moleküle pro asymmetrischer Einheit, deren Strukturen innerhalb der Fehlergrenzen identisch sind. Die Molekülstruktur des Komplexes (Fig. 5) bestätigt die aus NMR-Daten abgeleitete endo-Struktur des Cycloadduktes **5**. In Tab. 6 ist eine Auswahl von Abstands- und Winkelangaben zusammengefasst. Der CrP-Abstand beträgt 2.329(1) bzw. 2.322(1) Å und ist somit um 0.25–0.26 Å kürzer als die Summe der Einfachbindungsradien. Die Anordnung der Liganden um das Chromatom weicht von der idealen Oktaedergeometrie ab. Alle zu L *cis*-ständigen CO-Liganden werden von

Fig. 4. Stereobildpaar der Elementarzelle von 5a.

Tabelle 6

Ausgewählte interatomare Abstände (Å) und Valenzwinkel (°) von 5a

•			
Cr(1)-P(1)	2.329(1)	P(1)-Cr(1)-C(1)	89.2(1)
Cr(1) - C(1)	1.899(3)	P(1)-Cr(1)-C(2)	89.9(1)
Cr(1) - C(2)	1.900(3)	P(1)-Cr(1)-C(3)	92.0(1)
Cr(1) - C(3)	1.902(3)	P(1)-Cr(1)-C(4)	92.6(1)
Cr(1) - C(4)	1.908(3)	P(1)-Cr(1)-C(5)	178.7(1)
Cr(1) - C(5)	1.879(3)	C(1)-Cr(1)-C(2)	179.0(1)
		C(1) - Cr(1) - C(3)	90.6(1)
C(1) - O(1)	1.141(4)	C(1)-Cr(1)-C(4)	89.3(1)
C(2) = O(2)	1.145(4)	C(1)-Cr(1)-C(5)	89.7(1)
C(3)-O(3)	1.142(3)	C(2) - Cr(1) - C(3)	89.0(1)
C(4)-O(4)	1.139(3)	C(2)-Cr(1)-C(4)	91.1(1)
C(5)-O(5)	1.146(4)	C(2)-Cr(1)-C(5)	91.2(1)
		C(3) - Cr(1) - C(4)	175.4(1)
		C(3) - Cr(1) - C(5)	87.5(1)
		C(4) - Cr(1) - C(5)	87.9(1)
		Cr(1) - C(1) - O(1)	179.0(2)
		Cr(1) - C(2) - O(2)	178.3(3)
		Cr(1) - C(3) - O(3)	177.2(2)
		Cr(1) - C(4) - O(4)	176.9(3)
		$C_{\pi}(1) - C(5) - O(5)$	179.4(3)
		Cr(1) - P(1) - C(6)	112.9(1)
		Cr(1) - P(1) - C(7)	121.2(1)
		Cr(1) = P(1) = C(10)	121.8(1)
		C(6) - P(1) - C(7)	102.1(1)
		C(6) = P(1) = C(10)	106.6(1)
		C(7) = P(1) = C(10)	88.5(1)
$C_{\tau}(2) = P(2)$	2 322(1)	P(2) = Cr(2) = C(13)	91 1(1)
$C_{1}(2) = \Gamma(2)$ $C_{1}(2) = C(13)$	1.906(3)	P(2) = Cr(2) = C(14)	92.5(1)
$C_{r}(2) = C(13)$	1.906(3)	P(2) - Cr(2) - C(15)	88.8(1)
$C_{1}(2) = C_{1}(14)$	1.900(3)	P(2) - Cr(2) - C(16)	91 2(1)
$C_{r}(2) = C(15)$	1.895(3)	P(2) = Cr(2) = C(17)	179 3(1)
$C_{r}(2) = C_{r}(10)$	1.878(3)	C(13) - Cr(2) - C(14)	89.4(1)
C(2) = C(17)	1.070(5)	C(13) - Cr(2) - C(15)	1796(1)
C(13) = O(6)	1 142(4)	C(13) - Cr(2) - C(16)	91 1(1)
C(14) = O(7)	1 142(4)	C(13) - Cr(2) - C(17)	89 6(1)
C(15) O(8)	1 1 1 1 1 (1)	C(14) - Cr(2) - C(15)	91 0(1)
C(16) = O(8)	1 147(3)	C(14) - Cr(2) - C(16)	176 3(1)
C(17) - O(10)	1 141(3)	C(14) - Cr(2) - C(17)	87.6(1)
(17)-0(10)	1.141(5)	C(15) - Cr(2) - C(16)	89 6(1)
		C(15) - Cr(2) - C(17)	90.6(1)
		C(16) - Cr(2) - C(17)	88 7(1)
		$C_{r}(2) = C(13) = O(6)$	178 0(2)
		$C_{r}(2) = C(14) = O(0)$	176.6(3)
		$C_{r}(2) = C(15) = O(8)$	179.1(3)
		$C_{1}(2) = C_{1}(15) = O_{1}(8)$	178 5(2)
		$C_{r}(2) = C(17) - O(10)$	179 (73)
		$C_{r}(2) = O(17) = O(10)$	113 4(1)
		$C_{r}(2) = P(2) - C(10)$	119.6(1)
		$C_{1}(2) = C_{1}(2) - C_{1}(2)$	117.0(1) 122 Q(1)
		C(18) P(2) - C(22)	122.7(1)
		C(18) = F(2) = C(19)	102.5(2)
		C(10) P(2) C(22)	80 (V1)
			07.0(1)

372

dem sperrigen Phosphan abgestossen, so dass die Winkel C(3)–Cr(1)–C(4) und C(1)–Cr(1)–C(2) kleiner als 180° sind. Die Abweichung fällt für den Winkel C(3)–Cr(1)–C(4) mit 4.6° besonders gross aus, weil sich im Kristall die CF₃-Gruppe am Phosphor und die C(4)O(4)-Gruppe direkt gegenüberstehen (Fig. 5).

Diese Anordnung führt offensichtlich auch zu einem Abfluss von Elektronendichte aus der Cr(1)-C(4)-Bindung, die mit 1.908(3) Å länger als die übrigen CrC-Bindungen ist. Der zugehörige C(4)O(4)-Abstand wird dadurch etwas kürzer. In der Variationsbreite der Bindungswinkel am Phosphor zwischen 88.5 (89.0) und 121.8° (122.9°) kommt die Anpassungsfähigkeit dieses Elementes an die Strukturzwänge von Ringsystemen deutlich zum Ausdruck.

Zur Beurteilung der Ligandeneigenschaften des Cycloadduktes 5 werden in Tab. 7 die CO-Valenzfrequenzen, die Koordinationsverschiebungen $\Delta\delta(P)$ und die CrP-Abstände einiger verwandter Cr(CO)₅L-Komplexe miteinander verglichen. Danach

Tabelle 7

Vergleich der CO-Valenzfrequenzen, der Koordinationsverschiebung $\Delta\delta(P)$ und der CrP-Abstände (Å) von Cr(CO)₅L-Komplexen^{*a*}

Verbindung	A ² ₁	B ₁	A_1^1	E	$\Delta\delta(\mathbf{P})$	d(CrP)	$\Delta d(CrP)$	Lit.
CF ₂ CF ₃ CF ₂ Cr(CO) ₅	2070	1998	1968	1952	90.4	2.329(1) 2.322(1)	0.251 0.258	diese Arbeit
$ \begin{array}{c} $	2078	2005	1973	1960	79.1	2.399(1)	0.181	[20]
$ \begin{array}{c} $	2070	1997	1971	1955	97.9	2.301(2)	0.279	[8]
S CF3	2079	2005	1985	1979	97.1	2.284(1)	0.296	[21]
Ph ₃ PCr(CO) ₅	2065	1 9 80	-	1940	61.3	2.422(1)	0.158	[22]
$Me_2PCF_3Cr(CO)_5$	2076	-	1969	1954	83.4	-	-	[15]
$MeP(CF_3)_2Cr(CO)_5$	2081	-	1981	1969	96.0	-		[15]
Me ₂ P(SH)Cr(CO) ₅	2068	1990	1964	1951	-	2.344	0.236	[23]
$\frac{1}{4}$ $\frac{1}$	n	A d(C-P	-r(Cr)	$\perp r(\mathbf{P})$	$- d(C_{\tau}P)$	r(Cr) = 1	18 Å [24] r	(P) = 1.10 Å

 $^{a} \Delta\delta(P) = \delta(P)_{\text{Komplex}} - \delta(P)_{\text{Ligand}}, \Delta d(CrP) = r(Cr) + r(P) - d(CrP), r(Cr) = 1.48 \text{ A [24]}, r(P) = 1.10 \text{ A}$ [25].

Fig. 5. Molekülstruktur von 5a.

fügt sich 5 in die Reihe der Mono(perfluoralkyl)phosphane gut ein; Unterschiede zu verwandten Verbindungen wie Me₂PCF₃ oder 2 sind hauptsächlich sterisch bedingt.

Diskussion der Ergebnisse

Die bei der Untersuchung der $M(CO)_5 L$ -Komplexe (M = Cr, W; L = 2-9) gewonnen Daten bestätigen Zusammensetzung und Konstitution der neuen Verbindungen. Von den möglichen Donorzentren (C=C oder P) ist stets das Phosphoratom an das Metall gebunden. In günstigen Fällen gelingt – wie am Beispiel des Isopren-Cycloadduktes 2, 2' demonstriert [8] – die präparative Auftrennung der strukturisomeren Komplexe. Bei den Cyclopentadien- und Cyclohexadien-Derivaten 5/5' und 8/8' lässt sich durch Koordination an $M(CO)_5$ eines der anfallenden Isomeren in reiner Form isolieren. Die durch Röntgenbeugung ermittelte Struktur des Komplexes 5a beweist die aus den ¹⁹F- und ³¹P-NMR-Daten abgeleitete räumliche Anordnung der Substituenten am Bicyclus 5. Dem mit einem Anteil von 96% gebildeten Isomeren kommt die *Endo*-Struktur zu. Die [2 + 4]-Cycloaddition von CF₃P=CF₂ (1) an 1,3-Diene verläuft also stereospezifisch und synchron und weist damit die enge Verwandtschaft zwischen 1 und Fluorolefinen nach.

Hinsichtlich der Ligandeneigenschaften ergeben sich innerhalb der Reihe der Cycloaddukte 2-9 keine signifikanten Unterschiede, da die elektronischen Effekte trotz Variation der Grösse in erster Näherung konstant bleiben. Geht man davon aus, dass der CrP-Abstand in der Serie der Chromkomplexe 2a-9a Werte zwischen 2.30 und 2.40 Å aufweist, so ist zu folgern, dass die damit verbundene Variation der σ -Donorstärke durch die π -Akzeptor-Wechselwirkung kompensiert wird. Wahrscheinlich liegen die Kegelwinkel Θ dieser Phosphane (Definition nach Tolman [26]), bedingt durch den Einbau des P-Donors in die mono- bzw. bicyclischen Ringsysteme in einem relativ engen Bereich.

Experimentelles

Wegen der Hydrolyse- und Sauerstoffempfindlichkeit sowie der möglichen Toxizität der Verbindungen werden sämtliche Operationen unter Stickstoff oder Argon mit Hilfe einer Hochvakuum-Apparatur durchgeführt. Die Lösungsmittel werden nach den üblichen Methoden getrocknet und mit Stickstoff oder Argon gesättigt. Als Reaktionsgefässe dienen Mehrarmampullen mit Zerschlagventilen. Bei grösseren Ansätzen verwendet man Schlenkkolben. Sämtliche Geräte werden vor der Nutzung unter Vakuum augeheizt.

IR-Spektren: Modell 683 der Firma Perkin-Elmer; Lösung in Cyclohexan (KBr-Zellen).

NMR-Spektren: ¹H- und ¹⁹F mit WP80 CW- und WH90 FT-NMR-Spektrometern der Firma Bruker Analytische Messtechnik; TMS bzw. CCl₃F als interne Standard-Substanzen. ³¹P-Spektren unter ¹H-Breitband-Entkopplung; WH90-Spektrometer; P(OMe)₃ als externer Standard. Massenspektren: CH5-Spektrometer der Firma MAT-Finnigan bei folgenden Aufnahmebedingungen: Elektronenenergie 20/70 eV; T(Ionenquelle) 200°C; Ionenstrom 100/300 μ A; Beschleunigungsspannung 3000 V; SEV-Spannung 2.0 kV.

Die Darstellung der Liganden 2–6 und 8 erfolgt nach der vor kurzem von uns beschriebenen Methode [3,4]. Die Cycloaddukte 7 und 9 erhält man analog durch Umsetzung von 1 bzw. Me₃SnP(CF₃)₂ mit Furan bzw. 9,10-Dimethylanthracen. 1 und Me₃SnP(CF₃)₂ werden nach bewährten Verfahren hergestellt [27,28].

Arbeitsvorschrift zur Synthese der Cycloaddukte 7 und 9

(a) Aus $F_3CP=CF_2$ (1). 5 mmol 1 werden mit Furan (5 proz. Überschuss) bzw. 9,10-Dimethylanthracen (1 proz. Unterschuss) und ca. 1 ml Chloroform- d_1 in eine Glasampulle kondensiert und unter Vakuum abgeschmolzen. Die Mischung wird dann auf 25 °C gebracht und der Reaktionsverlauf durch ¹⁹F-NMR-Messungen verfolgt. 7 und 9 bilden sich quantitativ nach ca. 1 h. Nach Beendigung der Reaktion werden CDCl₃ und überschüssiges Furan bzw. die im Fall des Dimethylanthracens gebildeten Dimeren $[F_3CPCF_2]_2$ durch fraktionierte Kondensation im Vakuum abgetrennt (Kühlfallen für die Reinigung von 7: -78 und -196°C). Ausbeute: 7: 92% d. Th.; 9: 86% d. Th. Die *endo/exo*-Isomerenverteilung von 7 unmittelbar nach der Reaktion beträgt 67/33.

(b) Aus $Me_3SnP(CF_3)_2$. 5 mmol des jeweiligen Diens und $Me_3SnP(CF_3)_2$ werden im Molverhältnis 1/1 zusammen mit Chloroform- d_1 als Lösungsmittel unter Vakuum in eine Glasampulle eingeschmolzen und auf 70°C erhitzt (Wärmeschrank). Die Aufarbeitung der Produkte erfolgt wie bei (a). Reaktionsdauer: 7: 15 d; 9: 7 d. Ausbeute: 7: 85% d.Th.; 9: 79% d. Th.

Analytische und spektroskopische Daten von 7 und 9

7: ${}^{1}H$ -NMR: δ (ppm) 6.05 (m, 1H, HC=C), 5.80 (m, 1H, HC=C), 4.45 (m, 1H, HC), 4.94 (dm, 1H, HCP), ${}^{2}J$ (PH) 37.0 Hz. ${}^{19}F$ -NMR: 7: δ (ppm) -51.38 (ddd, CF₃), ${}^{2}J$ (PF) 73.0, ${}^{4}J$ (FF_A) 4.6, ${}^{4}J$ (FF_B) 10.4 Hz; -97.69 (F_A, CF₂), -101.65 (F_B, CF₂), ${}^{2}J$ (PF) 73.0, ${}^{2}J$ (PF_B) 12.0 J(AB) 257.5 Hz; 7': δ -50.56 (ddd, CF₃) ${}^{2}J$ (PF) 71.6, ${}^{4}J$ (PF_A) 8.5, ${}^{4}J$ (PF_B) 8.5; die Signale der CF₂-Gruppen von 7 und 7' sind überlagert. ${}^{31}P$ -{ ${}^{1}H$ }-NMR: 7: δ (ppm) -19.2 (ddq); 7': -30.7 (ddq). MS: 218 (M^{+} , 3%), 199 (M^{+} - F, 0.9%), 149 (M^{+} - CF₃, 2.7%), 68 (M^{+} - F₃CPCF₂, 100%).

Gef.: C, 32.33; H, 1.78. C₆H₄OF₅P ber.: C, 33.03; H, 1.83%.

9: ${}^{I}H$ -NMR: δ (ppm) 7.96 (m, br., 8H, aromat.), 2.72 (s, 3H, H₃CCC), 2.89 (d, 3H, H₃CCP), ${}^{3}J$ (PH) 17.0 Hz. ${}^{I9}F$ -NMR: δ (ppm) -51.0 (ddd, CF₃), ${}^{2}J$ (PF) 72.0, ${}^{4}J$ (FF_A) 4.0, ${}^{4}J$ (FF_B) 12.4 Hz; -92.18 (dq, F_A, CF₂), -101.91 (dq, F_B, CF₂), ${}^{2}J$ (PF_A) 226.0, ${}^{2}J$ (PF_B) 8.5, J(AB) 257.5 Hz. ${}^{3I}P$ -{ ${}^{I}H$ }-NMR: δ 10.3 ppm (ddq). MS: 356 (M⁺, 3.2%), 337 (M⁺ - F, 2%), 287 (M⁺ - CF₃, 0.1%), 206 (M⁺ - F₃CPCF₂, 100%).

Gef.: C, 60.45; H, 4.15. C₁₈H₁₄F₅P ber.: C, 60.76; H, 3.93%.

Darstellung der M(CO)₅L-Komplexe 2a-9b

Die Darstellung dieser Komplexe erfolgt nach der Methode der "indirekten photochemischen Substitution" [11]. Die Umsetzung der $M(CO)_5$ THF-Verbindungen mit den Liganden 2–9 lässt sich qualitativ am Farbumschlag verfolgen. Die Rohprodukte werden durch Sublimation bei Raumtemperatur von überschüssigem Hexacarbonyl befreit. Nicht umgesetzter Ligand wird abgepumpt.

Tabelle 8				
Darstellung und	analytische	Daten de	er Komplexe	3a-9b

Verb.	Summenformel	M(ber.)	Reakt. Zeit (h)	Ausbeute (% d. Th)	Analyse (Gef. (be	n er.) (%)) ^a	Bemerkungen
					C	Н	
3 a	C ₁₃ H ₁₀ O ₅ F ₅ PCr	424.18	24	58	37.74	2.54	hellgelbes Öl
					(36.79)	(2.34)	
3b	C ₁₃ H ₁₀ O ₅ F ₅ PW	555.98	40	64	28.55	1.95	gelbes Öl
					(28.05)	(1.80)	-
4 a	C ₂₃ H ₁₄ O ₅ F ₅ PCr	548.32	24	48	53.47	3.26	gelbes Öl
	20 11 2 2				(50.36)	(2.55)	0
4b	C ₂₃ H ₁₄ O ₄ F ₅ PW	680.12	48	52	45.97	3.52	hellbraunes Öl
	25 14 5 5				(40.59)	(2.06)	
5a	C ₁₂ H ₆ O ₅ F ₅ PCr	408.13	14	69	35.31	1.55	weisse Kristalle
					(35.29)	(1.47)	
5b	C ₁₂ H ₆ O ₅ F ₅ PW	539.94	21	65	26.49	1.11	weisse Kristalle
					(26.67)	(1.11)	
6a	C ₁₇ H ₁₆ O ₅ F ₅ PCr	478.27	24	45	45.18	3.93	gelbes Öl
					(42.68)	(3.35)	0
6Ъ	C ₁₇ H ₁₆ O ₅ F ₅ PW	610.07	21	56	34.45	2.83	blassbrauner
					(33.44)	(2.62)	Feststoff
7a	C ₁₁ H ₄ O ₆ F ₅ PCr	410.11	19	47	32.34	1.17	hellgelbes Öl
					(32.20)	(0.98)	0
7ь	C ₁₁ H ₄ O ₆ F ₅ PW	541.91	21	52	24.18	0.86	gelbes Öl
					(24.35)	(0.74)	8
8a	C ₁₃ H ₈ O ₅ F ₅ PCr	422.16	15	62	37.04	2.05	weisser Feststoff
					(36.97)	(1.90)	
8b	C ₁₃ H ₈ O ₅ F ₅ PW	553.97	20	53	28.48	1.52	blassbrauner
					(28.16)	(1.44)	Feststoff
9a	C ₂₃ H ₁₄ O ₅ F ₅ PCr	458.32	48	65	50.48	2.60	weisse Kristalle
					(50.36)	(2.55)	
9b	$C_{23}H_{14}O_5F_5PW$	680.12	48	72	41.41	2.48	blassbrauner
					(40.59)	(2.06)	Feststoff

^a 4a, 4b und 6a können nicht analytisch rein erhalten werden.

3a/b, 4a/b, 6a/b, und 7a/b fallen als hochsiedende Flüssigkeiten an und werden durch Kurzwegdestillation gereinigt. (Chrom-Komplexe: $30-35^{\circ}C/10^{-2}$ Torr; Wolfram-Komplexe: $40-50^{\circ}C/10^{-2}$ Torr). 5a/b und 8a/b lassen sich bei $35^{\circ}C$ sublimieren. Die Komplexe 9a und 9b werden mit n-Pentan gewaschen und danach aus Methylenchlorid bei $-10^{\circ}C$ umkristallisiert.

In Tab. 8 werden die Reaktionszeiten, die Ausbeuten und die analytischen Daten zusammengefasst.

Strukturbestimmung von 5a

Die Röntgenbeugungsanalyse des Komplexes **5a** erfolgt auf einem Syntex-P2₁-Vierkreisdiffraktometer an einem auf 140 K gekühlten Kristall mit graphitmonochromatisierter Mo- K_{α} -Strahlung (λ 0.71069 Å). Wichtige Abstände und Winkel sind in Tab. 6 zusammengefasst. Tabelle 9 gibt die Kristalldaten sowie Details zur

Tabelle 9

Formel	C ₁₂ H ₄ F ₆ O ₆ PCr
Molekulargewicht	408.2
a (Å)	9.253(2)
b (Å)	12.408(3)
c (Å)	13.978(3)
α (°)	79.91(2)
β(°)	73.91(2)
γ (°)	78.86(2)
$V(Å^3)$	1500.3
Raumgruppe	<i>P</i> 1
Z	4
$d_{\rm x} ({\rm g}{\rm cm}^{-3})$	1.81
Messtemperatur (K)	140
Kristalldimension (mm)	$0.21 \times 0.32 \times 0.25$
Messinstrument	Syntex
	P2 ₁ -Vierkreisdiffraktometer
Strahlung	Mo- K_{α} (λ 0.71069 Å, Graphitmonochromator)
Messgeschwindigkeit (intensi-	
tätsabhängig) (° min^{-1})	5–29 in 2 <i>0</i>
Messmethode/Messbereich	$\theta = 2\theta$ -scan; $4^{\circ} < 2\theta < 48^{\circ}$
Zahl der unabhängigen	
gemessenen Reflexe	4739
Zahl der Reflexe mit	
$I > 1.96\sigma(I)$	4121
Zahl der Variablen	481
$R_1 = \Sigma(F_0 - F_c) / \Sigma F_0 $	0.0340
$R_{2} = \left[\sum w(F_{0} - F_{c})^{2} / \sum w F_{0} ^{2} \right]^{1/2}$	0.0386
Strukturlösung	Direkte Methoden (SHELXTL-System),
	Cr- und F-Atome aus E-Synthese,
	P-, O- und C- und H-Atome aus
	Differenz-Fourier-Synthese
Verfeinerung	Kleinste Quadrate, Block-Matrix,
-	(SHELXTL-System)
Wichtungsschema	$w = [\sigma(F_0)^2 + (0.01 F_0)^2]^{-1}$
	$\sigma(F_0) = \sigma(I)/(2 \times F_0 \times Lp)$

Parameter zur Kristallstrukturbestimmung von Cr(CO)₅[C₇H₆F₅P] (5a)

Datensammlung und Strukturlösung wieder. Weitere Einzelheiten zur Strukturanalyse können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52787, angefordert werden.

Dank

Wir danken dem Minister für Wissenschaft und Forschung Nordrhein-Westfalen und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit.

Literatur

- 1 J. Grobe und J. Szameitat, Z. Naturforsch. B, im Druck.
- 2 J. Grobe und D. Le Van, Report on the First Soviet-German Symposium on Fluorine Chemistry, Königstein, Oct. 8/9, 1986.
- 3 J. Grobe und D. Le Van, Z. Naturforsch. B, 40 (1985) 467.
- 4 J. Grobe und D. Le Van, Tetrahedron Lett., 26 (1985) 3681.
- 5 M. Binnewies, J. Grobe und D. Le Van. Z. Naturforsch. B, 40 (1985) 927.
- 6 J. Grobe und J. Szameitat, Z. Naturforsch. B, 41 (1986) 974.
- 7 J. Grobe, D. Le Van und J. Nientiedt, Z. Naturforsch. B, 42 (1987) 984.
- 8 J. Grobe, D. Le Van, W. Meyring, B. Krebs und M. Dartmann, J. Organomet. Chem., 340 (1988) 143.
- 9 J. Grobe und D. Le Van, Z. Anorg. Allg. Chem., 518 (1984) 36; J. Grobe, D. Le Van und W. Meyring, J. Organomet. Chem., 307 (1986) 327.
- 10 B. Dechamps und F. Mathey, J. Chem. Soc., Chem. Commun., 15 (1985) 1010; N.H. Tran Huy und F. Mathey, Organometallics, 6 (1987) 207.
- 11 W. Strohmeier und F.J. Müller, Chem. Ber., 102 (1968) 3609.
- 12 E.O. Fischer und J.K.R. Wanner, J. Organomet. Chem., 252 (1983) 175.
- 13 C. Barbeau und J. Turcotte, Can. J. Chem., 54 (1976) 1603.
- 14 F.A. Cotton und C.S. Kraihanzel, J. Am. Chem. Soc., 84 (1962) 4432.
- 15 J. Apel, R. Bacher, J. Grobe und D. Le Van, Z. Anorg. Allg. Chem., 453 (1979) 39.
- 16 J. Grobe, M. Köhne-Wächter und D. Le Van, J. Organomet. Chem., 280 (1985) 331; J. Grobe, D. Le Van und J. Szameitat, ibid., 289 (1985) 341.
- 17 J. Grobe, D. Le Van und J. Nientiedt, Z. Naturforsch. B, 41 (1986) 149.
- 18 K.J. Packer, J. Chem. Soc., (1963) 960.
- 19 R. Appel, Pure Appl. Chem. 59 (1987) 977; R. Appel, J. Menzel und F. Knoch, Chem. Ber., 118 (1985) 4068.
- 20 J. Grobe, J. Szameitat und M. Möller, J. Organomet. Chem., im Druck.
- 21 J. Szameitat, Dipl. Arbeit Uni Münster 1984.
- 22 S.O. Grim, D.A. Wheatland und W. McFarlane, J. Am. Chem. Soc., 89 (1967) 5573; H.J. Plastas, J.M. Stewart und S.O. Grim, ibid., 91 (1969) 4326.
- 23 W. Meier, J. Strähle und E. Lindner, Z. Anorg. Allg. Chem., 427 (1976) 154; J. Organomet. Chem., 114 (1976) 67.
- 24 F.A. Cotton und D.C. Richardson, Inorg. Chem., 5 (1966) 1851.
- 25 L. Pauling, Die Natur der chemischen Bindung, Verlag Chemie, Weinheim, 1976.
- 26 C.A. Tolman, Chem. Rev., 77 (1977) 313.
- 27 J. Grobe und D. Le Van, Angew. Chem., 96 (1984) 716.
- 28 S. Ansari und J. Grobe, Z. Naturforsch. B, 30 (1975) 531; P. Dehnert, J. Grobe und D. Le Van, ibid., 36 (1981) 48.